The "trainedmodels" collection of methods.
More...
|
| analyze ($project, $id, $optParams=array()) |
| Get analysis of the model and the data the model was trained on.
|
|
| call ($name, $arguments, $expected_class=null) |
| TODO: This function needs simplifying.
|
|
| delete ($project, $id, $optParams=array()) |
| Delete a trained model.
|
|
| get ($project, $id, $optParams=array()) |
| Check training status of your model.
|
|
| insert ($project, Google_Service_Prediction_Insert $postBody, $optParams=array()) |
| Train a Prediction API model.
|
|
| listTrainedmodels ($project, $optParams=array()) |
| List available models.
|
|
| predict ($project, $id, Google_Service_Prediction_Input $postBody, $optParams=array()) |
| Submit model id and request a prediction.
|
|
| update ($project, $id, Google_Service_Prediction_Update $postBody, $optParams=array()) |
| Add new data to a trained model.
|
|
|
| convertToArrayAndStripNulls ($o) |
|
The "trainedmodels" collection of methods.
Typical usage is: $predictionService = new Google_Service_Prediction(...); $trainedmodels = $predictionService->trainedmodels;
◆ analyze()
Google_Service_Prediction_Trainedmodels_Resource::analyze |
( |
| $project, |
|
|
| $id, |
|
|
| $optParams = array() ) |
Get analysis of the model and the data the model was trained on.
(trainedmodels.analyze)
- Parameters
-
string | $project | The project associated with the model. |
string | $id | The unique name for the predictive model. |
array | $optParams | Optional parameters. |
- Return values
-
◆ call()
Google_Service_Resource::call |
( |
| $name, |
|
|
| $arguments, |
|
|
| $expected_class = null ) |
|
inherited |
TODO: This function needs simplifying.
- Parameters
-
$name | |
$arguments | |
$expected_class | - optional, the expected class name |
- Return values
-
Google_Http_Request|expected_class | |
- Exceptions
-
◆ delete()
Google_Service_Prediction_Trainedmodels_Resource::delete |
( |
| $project, |
|
|
| $id, |
|
|
| $optParams = array() ) |
Delete a trained model.
(trainedmodels.delete)
- Parameters
-
string | $project | The project associated with the model. |
string | $id | The unique name for the predictive model. |
array | $optParams | Optional parameters. |
◆ get()
Google_Service_Prediction_Trainedmodels_Resource::get |
( |
| $project, |
|
|
| $id, |
|
|
| $optParams = array() ) |
Check training status of your model.
(trainedmodels.get)
- Parameters
-
string | $project | The project associated with the model. |
string | $id | The unique name for the predictive model. |
array | $optParams | Optional parameters. |
- Return values
-
◆ insert()
Train a Prediction API model.
(trainedmodels.insert)
- Parameters
-
string | $project | The project associated with the model. |
Google_Insert | $postBody | |
array | $optParams | Optional parameters. |
- Return values
-
◆ listTrainedmodels()
Google_Service_Prediction_Trainedmodels_Resource::listTrainedmodels |
( |
| $project, |
|
|
| $optParams = array() ) |
List available models.
(trainedmodels.listTrainedmodels)
- Parameters
-
string | $project | The project associated with the model. |
array | $optParams | Optional parameters. |
@opt_param string pageToken Pagination token. @opt_param string maxResults Maximum number of results to return.
- Return values
-
◆ predict()
Submit model id and request a prediction.
(trainedmodels.predict)
- Parameters
-
string | $project | The project associated with the model. |
string | $id | The unique name for the predictive model. |
Google_Input | $postBody | |
array | $optParams | Optional parameters. |
- Return values
-
◆ update()
Add new data to a trained model.
(trainedmodels.update)
- Parameters
-
string | $project | The project associated with the model. |
string | $id | The unique name for the predictive model. |
Google_Update | $postBody | |
array | $optParams | Optional parameters. |
- Return values
-
The documentation for this class was generated from the following file:
- lib/google/src/Google/Service/Prediction.php